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Abstract

A robust computable approximation to the nonlinear filtering

problem for a diffusion model is treated , where the sys tem and da ta

models are given by dx = f(x)dt + c~(x )dz , dy = g(x)dt + dw. The

approximation (with approximation parameter h) is robust in the sense

that it is locally Lipschitz continuous in the data y() (sup norm)

uni formly  in h and , as h 0 , it converges to the optimal filter

for the diffusion.
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1. Introduction~

Let z(.),w(.) denote two independent Wiener processes ,

the second one with covariance 1 t  and define the processes

x( ),y(.) by the it6 equations

(1.1) dx = f(x)dt + o(x)dz, x(0) arbitrary c Rr,

(1.2) dy = g(x)dt + dw , y ( O )  = 0, y(t) e RS , t < T.

where T is an arbitrary, but fixed positive number.

It is assumed for convenience that f(.),a(.),g(.) are

hounded and continuous and the solution on Cr[O ,T] (the space of

Rr~ valued continuous functions on [0,T]) of (1.1) is unique in

the sense of distributions. It is also assumed tha t the function g(.)

has bounded and continuous first and second derivatives and

either that the range of x(~) is bounded or that the derivatives

of g(•) are uniformly Continuous. Concerning the first condition ,

see the remarks in Section 4. We use x
~ 

and x(t) interchangeably.

Let F() denote a bounded continuous real valued function

on Rr , and the cr-algebra generated by y5, s < t. We are

concerned with robust approximations to the conditional expectation :~
EtF(x

~
) E E[F(x

~)J ~~] ,  in the sense that we want a “good”

approximation which is a Continuous function of the data y ().

Let ~(•) 
denote a process which is independent of y(.),

but which induces the same measure on Cr [0 ,T1 that x(•) does.

Then it is well known [1], [2] that w.p.l ,

~The author gratefully acknowledges several stimulating discussions withJ.M.C. Clark, who contributed considerably to the author’s understanding
of the subject. 
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- 

~~~ f~Ig (i~)I
2du]

(1.3) E F(x t) 
= t —

E,~ exp [f~g ’(~~ )d y~ - .
~~
. f~Ig (~~)I

2du]

E denotes expectation over x() given y(.).

Although stochastic differential equation representations

[11 , [2] for EtF(x t) are known, the problem of effectively

computing or approximating E
~
F(xt) is still in bad shape. Of

particular interst is a computational or approximation method j
that is robust in y(•), in the sense that it is suitably continuous

in y(), and actually approximates EtF(xt) well. Here , we

develop an interesting approach to this problem by combining the

• approximation ideas in [31 , [4] with the robustness ideas of

Clark in [5). In particular , Clark showed that (1.4) is also a

version of EtF(xt) and that it is locally Lipschitz continuous

in y(~ ) at each y(•) C 1(0,T] C[0,T].

(1.4) E F(x = 
~~~~~~~~~~~~~~~~~ - f~ y~dg(~~ ) - 

~~
- f~~jg (~~~) j 2

duJ 
.

E,~~ exp[y.~g(~~) 
- J~ y~dg (~~) - 2 1O~~~~u~ ’ du]

In a formal sense , (1.4) is obtained from (1.3) by doing an inte-

gration by parts on the stochastic integral in (1.3).

In [3], Kushner developed a computational approach to optimal

control and filtering problems on diffusion models. The basic idea

was to approximate the diffusion in a particular way by an

interpolated discrete parameter Markov chain , and to show that the

minimal cost for the controlled chain converged to that for the

diffusion , as some approximation parameter went to zero. For the

filtering problem the filter for the approximating

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—-• ~~~~~~~~~~~~



3

chain (but using the actual observational data from (1.2)) similarly

converged to the filter for the diffusion . The interpolation times

were constant in the filtering problem in [3] . We can use the same

approximating process here as ~tas used in [3] . In fact the filter

approximation of (3] can be proved to be robust in the sense of

Theorem 1 also. But it is more convenient notationally to use the

continuous parameter Markov chain approximation xh(.) to x()

which was developed by Kushner and DiMasi ([4], Section 8) (h is

an approximation parameter , see below).

Next, let x~
’(.) denote !i~~ 

finite state continuous parameter

Markov cha in , and let us consider the corresponding filtering

problem . Let the observational data available at t still be de-

no ted by 
~u’ 

u < t, where

(1.5) dy = g(x~)dt + dw.

Then it is well known ((6], [7]) that (1.3) holds w.p.l with

~h ( . ) ,  xh ( .)  replacing 
~~
(.), x(.) resp., where ~h(.) has the

as xh ( . )  has , but is independent of y(.);

(1 6) E p (xh) 
~~~~~~~~~~~~~~~~~~~~~ - 

~~ f~ lg(~~)I
2du]

E~~ exp [f~g ’(~~)dy~ - .
~~
. f~ Ig(~~)1

2du]

Due to the piecewise constant nature of ih (.j , the stochastic

integral can be readily integrated by parts to yield the chain

version of (1.4):



(1.7) EtF (x
~
) = 

E,~~F(i~)exp [gI(i~)y~ - f~ y~ dg( )~~~ - ~~~ f~ Ig (~~)I
2du

E exp [g t(i~)y~ - f~ y~dg(i
h) - ~~

- f~ Ig(~~ )l
2du]

The expression (1.7) is also ([5]) locally Lipschitz Continuous in

y(•) at each y ( . )  c C5 [0,T]. In Section 2, we define a particular

chain for which (1.7) can be computed and and also conv erges

to (1.4) for all y (). In Section 3, we prove the uniform

robustness result; namely that the continuity in y() of (1.7)

is uniform in h. This uniformity is crucial for robus tness.

Some remarks on computation are made in Section 4.  Let F~~( y ( . ) )

and F~~(y(•)) denote the value of (1.7) and (1.4), resp., at

I

I

.4

I
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2. A Useful Approximating Chain {xh(.)}.

We next describe the particular approximating chain which is F
to be used in Section 3. Other approximating chains can certainly

be used . The main criteria for the choice concern the robustness

and the ease of use in computation for the filtering problem . Let
r . . . . r .Rh denote the finite difference grid on R with difference

parameter h. Either R~ or a subset of it will be our state

space. Actually, h can be vector valued , the finite difference

interval depending on the direction , but we stick to the simpler

case. The transition function will be stated for the case where

= cr(.)a’(.)/2 is diagonal , for notational simplicity . The

expressions for the general case are in (3, Chapter 6.2]. Define

Qh
(x) = 2 

~ a1~
(x) + h ~If~(x)I~ ~t

h (x) = h2/Q~’(x) , let

inf(Ia(x) I + If (x ) I)  > 0 and e. = unit vector in .th coordinate
X r hdirection. For x C Rh and y = x ± e1h, set p (x ,y) =

[a.1 (x) + hf
~
(x)]/Qh (x) where f~ = max[0,f], f = max (0,-f];

for other (x,y)-pairs, set ph(x y) = 0. Let denote the

chain with transition probabilities {phcx,y)}. Interpolate the chain

into a continuous parameter Markov process , denoted by ~~‘( ) ,  by

defining the interjump intervals by

H
P{jump after t + s~x~ = x} = exp - (s,~t

h
(x)).

The process has the following properties [4, Section 81.

E (next state value - x~x = curren t state value ] = f ( x )~ th (x) ,

covar(next state value - X IX = current state value] = 2a(x)~t
h(x) + o(~t~~x)) I
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E[x~÷~ 
- xix~ 

= x] = f(x)~ + o(~),

covar[x~÷~ 
- xlx~ x] = 2a(x)~ + o(~).

More details are in [3], [4]. The sequence {xh(.)} converges

weakly in D’~[o ,T) to the x(~) of (1.1), where Dr [O,T] is

the space of Rr valued functions on [0 ,T] which have left-hand

limits and are right continuous. The space is endowed with the

Skorokhod topology . The states of the process {x1’(.)},t~~} only

communicate with their nearest neighbors.

Nex t, the main robustness theorem will be proved .

a

~~



7

3. The Robustness Theorem.

flioorem I. EtF(x~
) given by (1.7) is continuous in the

sj~premum norm at each y() C CS [0 ,T], uniformly in (small) h > 0.

In fact, for each bounded set S in CS [0,T], there is a real

K(S) such that lF~ (y ( ) )  - F~(~ ( ) ) ~ < K( S)~~ y - 

~l I £Qi y(•)

and 
~~~~ 

C S. Also , (1.7) converges to (1.4) for
5

~~~h y(.) C C [0 ,T].

Proof. Let S denote a bounded set in CS [O ,T], with y(~)

and ~~( )  c 5. We need only show that there is a constant K1(S)

depending only on S such that

Efexp iy~g(x~) - J y ~dg (x~) - 4 J Ig(x~ )l
2du]

(3.1) .

- exp [~~g(x~) - J~~~
dg (x~) - 4 J ~~~~~~~~~~ < K 1(S)II YY II .

uniformly in h and t < T . We can and will

drop the - 4 J Ig(x~)l
2du term , since g(~) is bounded . Then ,

using the inequality Ie
X
~efl < jx~y~(~X÷~Y) we have the upper

bound for (3.1)

S..

El (y~ -~~ ) ’ g(x~) - J (yu-~~ )’dg(x~)I ~exp (y~g(x~) - J y ~dg (x~)]

+ exp [~~g(x~) - 

J~~~
dg(x~)] I.

We .need only show (3.2) and (3.3). K is an arbitrary constant .

-~~~r k~i . ~~~~~~~~~~~~ ~~~ ~~~~~~~ — — -  
~~~~~~~~~~~~~~~~~~~~~~~~~ 

. .
~
•- 

-~
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(3 .2 )  E~
J

t
y~

dg( x~ )~~2 
< K 2 J~~y~~

2 , unifo~~ly in t < T  and small h. 

8

(3 3) E exp J q 1~dg(x~) bounded uniformly in bounded sets of

q(.) C C5[0 ,T] and in (small) h and t < T.

• First, (3.2) will be proved . Let and ~~(T ) denote

the minimal a-algebra over which g(x~), u < t , is measurable and

the Borel field over [0,T], resp. It is convenient to use the

decomposition

(3.4) g(x~) = M~ + r~ , a

where Mh(.) is a martingale and rh(.) is a predictable process ;

in particular , rh(t) is adapted to and (as an (~,t) function),

is measurable on the sub a-algebra of X 
~~ (T ) which

is induced by the left continuous functions . The decomposition (3.4)

is unique and r h(.) has the representation = J V~ds where

= yh(Xh) and ~h(.) is given by

4

(3.5) Yh(x) = 
~~ [g(y) 

- g (x))p~
’(x ,y)/~ t’~(x)y

Note that rh(.) is the unique predictable function which satisfies

E [r ~~~5 - r~ j~~~ ] = E [g (x~~~5) - g (x~~) I~~~] ,
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f r om wh ich r h ( . )  and ~h(.) can be determined. Using a truncated

Taylor expansion on (3.5), and the properties of the chain which were

given in Section 2, and the definithn g~~ (x) = Hessian of g(•)

at x, we can write

I
(3.6) yh (x) = {[g~(x)f(x) + trace a(x)g~~(x) ]~th(x) + o(~th(x)J/~th(x)

= ~~g(x) +

where -- ~ as h -‘. 0 uniformly in t < T , and in x , and ~~~~~

is the differential generator of (1.1). In any case Iy~
’(x)l is

uniformly bounded in (small) h and in x. Note that ~.1h ( . )  is bounded
on [0 ,1], sinc e 1h(.) and g ( x h(.)) are.

Nex t, let us calculate the quadratic variation of Mh(.).

This is the increasing (in the sense of positive defini te matrices)

matrix valued predictable function Ah(.) such that

Mh (M h~~ - = N h
t ’ t ’ t t

r t
is a matrix valued martingale. We have = I ~

hds whereJ o s
= A (x 5) and A (.) is given by

A 1
~(x) = 

~~ [ g ( y )  - g(x) [[g(y) - g(x)J ~p
h (x y),~ t

h(x).
y

is obtained from the characterization of Ath(.) as being

~• -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — •



the unique predic table function such that, for  all ~ > 0 ,

E [A
~ +o

- A~~i~~~~
] = E [M

~+~~
(M
~+o

)’ - M~ (M~) ‘~~ ~~~~
]

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note that IA
h (x)I is bounded uniformly in x and h.

Now , we are prepared to evaluate (3.2). Write

• J y ~dg (x~) = J y ~ dM~ + ~~~~~~~~~

Then ( 3 .2 )  fo l lows  from the uniform boundedness of ~Th) and

and the mar tingale inequali ty

1.. ~T ~ r T
E m a x lj  y ’dM ” J < 4 J J y ~ E j  dA ” = 4 J J y J J  E J )çdu

• t<T 0
U u 0 o

We now turn to (3.3). It is convenient to bound (3 .3)  under

the assumption that x~
’(.) is stopped after the Nth j ump , where N

• i s an a rb i t r a ry  in teger .  The obtained bound will not depend on N.

Fi x t , set t = n S , where n is an integer and write (3.3) as

h n - l
A = E fl exp I q ’d g(x ~ ) .

i=0 ~ [i6 , id + 5)  U

L et E~ d denote the expectat ion condit ioned on ~~~~~ Let

x = x~~~. There is a func t ion  o ( • )  which can depend on N and h

and on the modulus of c o n t i n u i t y  of q ( . )  on [0 , 1) , but is u n i f o r m

in x and is such that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
•1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ • -  .. • .  ____



11 U;
• A~ ~~~ exp J q~dg(x~) < (1 - ______  + o ( ó ) )

[ i S , ió+ 5) L~t (x )

(3.7)

+ E~~6 exp q~ 6[g(x~) 
- g(x)] . ______  + o ( S ) ,

t~t (x )

where x~ is the successor state to x , given one jump in

[i 5 , i6+~ ) and is the value of q at the j ump time in [ió , i&-5) if any .
Expanding (3.7) yields

< (l~ d/~t
h (x) )  + ( d/~th (x)  + o(~ ))E [l+q~~ (g(x~) - g(x))

+ (~j~ ( g (x~) - g(x)))
2/ 2

+ o1
[~~j~~(g (x~) - g ( x ) ) ) 2] + o(ó)

where o1(y)/y 0 as y 0. Thus for some K1, independent of N ,h

and x , and an o(•) with the properties of the above o(.) function

A~ < 1 + K 1i5 + o(ó).

Substituting this into (3.7) and letting 6 -
~~ 0 y ields

< exp K1T , independently of h and N.

The las t asser tion of the theorem can be proved in the same

way that a similar assertion was proved in [3, Chapter 7.5] for an

interpolation of a chain similar to {
~~~} .  Q.E.D. 

S
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Remarks . 1. Since (1.7) also converges to (1.3) for almost

• all y(~) (Wiener measure) the theorem provides another proof of H

Clarks representation (1.4) and its Lipschitz continuity.

2. The uniformity (equi Lipschitz continuity) in

the theorem is crucial to the value of the result , for otherwise

the “robustness” could well become less and less as h -
~ 0.

• 3. From an applications point of view , robustness

is important since the conditional moments should be smooth functions

of the data. Otherwise unaccounted for errors in measurement or errors

in the numerical calculation might render the result meaningless.

• Furthermore , in applications w(~) is not usually a Wiener process ,

although it is convenient to use a filter designed under the

assumption that it is a Wiener process. Then the robustness idea

is that if w(.) is close to a Wiener process (in some pathwise sense),

then the estimates would also be close to the estimates which would be

obtained if w(.) were actually a Wiener process. We might lose

information by not building a filter which considers the actual

statistical structure of (non Wiener) w(•), but that filter would be

much more complicated than the one which is optimal under the Wiener

assumption.

I,
IS

1
• - . • ______
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4. Remarks on Computation

First , let t~ > 0 and let us define a process to be denoted

by ‘
~~~

( .)  and which is essentially xh(.), but altered so that the

• jumps occur only at times i~ , i = 1 Let t~ < t~t
h (x) , all x.

• In particular , set ~
h
~~ (t)  = on [iL ~, i~ +~ ) ,  where

is a Markov chain on the sta te space R~ wi th transi tion

probabilities P~~~ y) = p (X,y)(A/
~
t (x)) for y = x ± e1h and

p (x x) = 1 - 

~ 
p~~’~ ~~

. The process ~~~~~~~ converges weakly
y=x±e.h X , ) ’

to x (~ ) as h , ~ -‘-

Let ~-h S t~(.) be independent of y() bu t have the same path

distributions as ~h~A (.) does. Then with ~-h~~(.) replacing

in (1.6), it is shown in [3, Chapter 7.5] that (1.6) converges to

(1.3) for almost all y(•) (Wiener measures),

The method used in the proof of the theorem can also be used

• w i t h  the approximation ~~~~~~ replacing the approximation xh ( . ) .

Th en bo th r~ ( .)  and A h ( .)  wi l l  s t i l l  be predic table , but wi l l  be

piecewise constant in the (iL~,i~ +~) intervals , and the theorem will

continue to hold. Furthermore the difference between (1.6) evaluated

with xh(.), and with ~h~A (.) goes to zero as 1~, h -
~ 0, uniformly

in bounded y() sets.

In order to have a computationally feasible method for getting

values of (1.6), the state space must be finite. Let G be a closed hyper-

rectangle in Rr and set Gh = R~ A G. Let T = infft: x~ £ 3G)- ,

= i n f( t :  ~~ % G } , and let i.t denote the measure of x0. Suppose

that ~G , the boundary of G, is regular in the sense that

P~ {I ‘~ T = I ’  A TI  = 1. Let )~h ( .) )~( .)~~~h t L~( .)  denote the

processes stopped on first exit from C’~. Then the theorem remains

_ _ _  -.--• . •~~~~~ ~~~~~ • . - • • - • ~~~~~~~~-~~~~~~~~~~~~~~ -.-•-•~~~~•• - — -- , -•
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valid for these processes replacing x~
’(),x(.),~~~”~() (then

~~
(.) and ~-h~~(.) are also replaced by the stopped processes) .

With the use of the stopped process , the state space Gh is finite

and the method of [3, Chapter 7.5] can be used-with the

approximation . Alternatively, we can use a method of Clark. In (5] ,

Clark gave a set of ordinary differential equations (not 1t6 equations)

for realizing (1.7), and the solution of this set , when considered as

a function of y(.), has the same robustness property as (1.7) has.

~~~~~~~~~~~~~ ~~ 
. . - -~- ~

j _ _  _
~~~~~. . . • • ~~~~ • . • -
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